
Efficient TCAM Encoding Schemes for Packet
Classification using Gray Code

Yeim-Kuan Chang and Cheng-Chien Su
Department of Computer Science and Information Engineering

National Cheng Kung University
Tainan, Taiwan R.O.C

{ykchang, p7894104}@mail.ncku.edu.tw

Abstract—Packet classification is an enabling function in Internet
routers for a variety of Internet applications. In order to classify
Internet packets into flows, Internet routers must perform
searches over a set of filters using multiple fields of the packet as
the search key. Because of its speed and simple filter
management the Ternary Content Addressable Memory (TCAM)
is currently the dominant hardware solution for IP lookups, i.e.,
a one-dimensional packet classification. To make TCAM the
solution for the multi-dimensional packet classification, efficient
methods that store the range fields of the classification tables in
TCAM are needed. In this paper, we propose a set of novel range
encoding schemes based on Gray code. Many range-encoding
techniques are used to improve the existing elementary interval-
based range encoding schemes. The present experiment’s results
show that the proposed Gray code-based schemes consume less
TCAM storage space than the existing schemes.

I. INTRODUCTION

Packet classification is needed for a variety of Internet
services that require the capability of differentiating various
packet flows for suitable processing. Flows are defined by rules
that specify some criteria for the field values of the packet
headers in incoming packets. In order to classify packets into
flows, routers must perform searches over a set of rules using
multiple fields of the packet as the search key. Typically, the
packet header fields used in filters comprise the following five
fields: two prefixes specifying the source and destination IP
sub-networks, two arbitrary ranges specifying the source and
destination transport-layer specifications, and a singleton value
or a wildcard for the protocol number. Routers resolve the flow
for a given packet by searching the set of filters for the subset
of matching filters against the five header field values of the
packets.

Packet classification can be implemented in either software
or hardware. Many software approaches were proposed in the
literature. However, the software solutions have the
disadvantages of un-deterministic run times and memory
requirements growing linearly with the sizes of the rule tables.
It is a challenge to implement the packet classification purely
by software and still be able to meet the search speed
requirement in gigabit routers. Readers can refer to [3] for
comprehensive surveys on software solutions. In this paper, we
focus on hardware architectures, especially, the Ternary
Content Addressable Memory (TCAM)-based search engine.
The TCAM-based search engine is currently the popular
hardware solution because (1) industry vendors are providing

cheaper and faster similar TCAM products, (2) TCAM
architecture is easy to understand and simple to manage for
updating TCAM entries, and (3) TCAM’s performance is
deterministic (i.e., it takes the same number of cycles to
complete a search).

Despite these advantages, TCAMs do suffer from four
primary deficiencies: (1) high cost per bit relative to other
memory technologies, (2) high power consumption, (3) limited
scalability to long input keys, and (4) inefficiency in storing
ranges. The cost-to-density-ratio of TCAM has been
dramatically improved in recent years. A lower power
consumption for TCAMs can be achieved by means of circuit
designs that reduce the matchline voltage swing, the switching
activity, or the active matchline capacitance [11]. The
partitioning techniques proposed in [12][13] can also reduce
the TCAM power consumption. However, it can only do so for
the prefix fields. A traditional solution for storing ranges in
TCAM is the direct range-to-prefix conversion which
individually converts each range into multiple prefixes. In the
worst case, a W-bit range may require 2(W – 1) prefixes. A
single filter including two port ranges could require 4(W – 1)2

TCAM entries, or 900 entries for 16-bit port numbers. This is
usually referred to as the range-to-prefix blowout. The problem
of limited scalability to long input keys can be solved by the
range encoding techniques proposed in [7].

Many range encoding schemes were proposed in the
literature to solve the range-to-prefix blowout problem
[4][5][7]. These range encoding schemes are based on the
independent field searches and the two-level SRAM-TCAM
architecture shown in Figure 1. The field values in each field of
the rule table are independently converted into one or more
field ternary strings by using a special encoding scheme. The
field ternary strings of all field values in a rule are multiplied to
obtain one or more rule ternary strings that are finally stored in
TCAM. Likewise, the address values in the input packet
headers must be translated to the intermediate results which are
used as the keys to perform the search operations in TCAM.
The address-to-intermediate result translation is the additional
overhead introduced in the two-level SRAM-TCAM
architecture. Thus, the address-to-intermediate result
translation table must be done efficiently. In this paper, we do
not encode the prefix fields as shown in Figure 1 because
prefixes can be stored in TCAM directly. In [4][5], a n-bit
vector is used to represent each range field of a rule, where n is
the number of distinct ranges specified in this field. In [7], a set
of encoding schemes called parallel packet classification

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1834

encoding (PPCE) is proposed based on the concept of
elementary intervals. PPCE improves over the scheme
proposed in [5] by exploiting the relationship between ranges.
In this paper, we further improve PPCE by using the binary
reflected Gray codes [9]. Our experimental results show that
the proposed Gray code-based schemes use less TCAM storage
than PPCE.

The rest of the paper is organized as follows. Preliminaries
and related works are discussed in Section II. The proposed
schemes are described in Section III. The results of the
performance comparisons are given in Section IV. Finally, the
paper is concluded in the last section.

II. PRELIMINARIES AND RELATED WORKS

We first briefly describe the Buddy code, Gray code, and
the elementary intervals needed in the paper. Their formal
definitions can be found in [9] and [10]. Then, the existing
TCAM encoding schemes that are closely related to the
proposed schemes are described.

Buddy Code (BC): The Buddy code follows the traditional
number sequence (e.g., 0, 1, 2, 3, …, 2n – 1 for n-bit
addresses). Based on the Buddy code, the prefix ∗− hW bb 1

contains the addresses of
h

hW bb 001−
 to

h

hW bb 111−
. Each

prefix A = ∗+− hhW bbb 11 of length W – h ≥ 1 has a buddy

prefix B = ∗+− hhW bbb 11 such that A and B can be combined

into prefix ∗+− 11 hW bb of length W – h – 1.

Binary Reflected Gray Code (BRGC): The binary
reflected Gray code is defined recursively as follows. The 1-bit
BRGC code is G1 = {0, 1} and the k-bit BRGC code is

{ }011-21-210 1,1,,1,0,,0,0 1-k1-k IIIIIIGk =
, where

{ }
1-2101 1-k,,, IIIGk =− is the (k–1)-bit BRGC code. For

example, the 3-bit BRGC code is G3 = {000, 001, 011, 010,
110, 111, 101, 100}, where the last inserted bits are underlined.

Elementary intervals: Assume there is a default range
covering the whole address space. The elementary intervals,
constructed from the endpoints of a range set G, is EI = {E[i] |
E[i] = [L[i], U[i]] for i = 0 to k – 1}, where k is the number of
elementary intervals in EI. EI must satisfy the following four

conditions: (1) L[0] = 0 and U[k–1] = 2W – 1, (2) U[i] = L[i+1]
– 1 for i = 0 to k – 2, (3) all the addresses in E[i] are covered by
the same subset of G, denoted by G[i], and (4) G[i] ≠ G[i+1].
For example, EI constructed from a set of six 5-bit ranges is
shown in Figure 2. There are six valid elementary intervals
covered by at least one original range in G. The other intervals
are default elementary intervals covered only by the default
range [0, 31].

A. Direct range-to-prefix conversion
In the direct range-to-prefix conversion, each range is

individually converted into one or more prefixes. Efficient
direct range-to-prefix conversion algorithms can be found in [1]
and [10]. For example, the range R = [2, 6] is converted into
three prefixes, 001*, 010*, and 0110. In the worst case, the
range [1, 2W – 2] is split into 2W – 2 prefixes. For a set of m
ranges, the worst-case number of prefixes generated by a direct
range-to-prefix conversion algorithm is O(mW) [10].

B. Elementary interval-based encoding scheme
By giving each elementary interval a unique identifier

(code), an original range can be encoded by the identifiers of
the elementary intervals covered by the range. The ranges
encoded by the identifiers of the elementary intervals are called
primitive ranges [7]. For example, the set of four 5-bit ranges
G = {R1 = [14, 27], R2 = [2, 6], R3 = [11, 29], R4 = [9, 22]}
generates the set of elementary intervals EI = {E0, E1, …, E8}
shown in Figure 2. First, we assign a unique identifier to each
elementary interval. One simple way is to assign the identifiers
to the elementary intervals serially (i.e., Buddy code). E0 gets
0, E1 gets 1, and so on. Thus, R1 can be encoded as a primitive
range [5, 6] because R1 covers elementary intervals EI5 and
EI6. Similarly, R2, R3, and R4 are encoded as [1, 1], [4, 7], and
[3, 5], respectively. Because there are nine elementary
intervals, four bits are needed in the code space. Thus, by using
the direct range-to-prefix conversion, R1 is converted into two
prefixes 0101 and 0110. R2 is converted to 0001, R3 is
converted to 01**, and R4 is converted to 0011 and 010*. A
total of six 4-bit prefixes are needed. As a comparison, the
original direct range-to-prefix conversion generates 17 5-bit
prefixes for the same set of ranges. To differentiate this scheme
from other elementary interval-based schemes presented in this
paper, we call it the basic elementary interval scheme.

C. Parallel packet classification encoding (PPCE) scheme
PPCE [7] is also based on elementary intervals but the

default elementary intervals are given a common code 0. PPCE
divides the original primitive ranges into multiple groups
(called layers). Depending on the encoding style, the codes
assigned to the primitive ranges in one layer may be (1)

Figure 1.Two-level architecture for packet classification.

1

TCAM

Field 1

Range
Field 1

Intermediate
Result 1

Field m

Range
Field m

Intermediate
Result m

Field m+1

Prefix
Field 1

Field m+n

Prefix
Field n

2

Classification Result

SRAM

N

Figure 2.The elementary intervals set EI constructed from
G = {R1, R2, R3, R4}

0

[9,10] [2,6]
E0 E1 E2 E3 E4 E5 E6

[0,1] [7,8] [11,13] [28,29]
E7 E8

[14,22] [23,27] [30,31]

8 16 24

R1=[14, 27] R2=[2, 6]

R3=[11, 29]

R4=[9, 22]

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1835

independent of, (2) partially dependent on, or (3) completely
dependent on the codes assigned to the primitive ranges in
other layers.

In the PPCE style-I, all the ranges in one layer must be
disjoint. The number of layers required will be equal to the
maximum number of ranges that all overlap with each other.
The code assignment done in one layer is independent of the
other layers. Assume layer i contains Li ranges. Different non-
zero codes are assigned to the Li address segments covered by
the Li ranges and zero is assigned to addresses that are not

covered by any range. ()1log +iL bits are needed for layer
i consisting of Li ranges. The intermediate result (identifier) of
an elementary interval is obtained by concatenating the codes
of the elementary interval in all layers. As shown in Figure
3(a), layer 3 contains R1 and R2; thus, two bits are needed to
encode the three address segments created by R1 and R2. The
PPCE style-I is the same as the bitmap intersection scheme
proposed in [5] if only one range is allowed in a layer.

After we encode the elementary intervals, each primitive
range has to be assigned with a match condition which is the n-
bit ternary string stored in TCAM, where n =

=

+
m

i
iL

1

)1log(and m is the number of layers. Let Ri be a

range in layer i. The match condition of Ri is obtained by
setting the corresponding bits to the code assigned to Ri in layer
i and the other bits corresponding to the other layers are set to
don’t care. For example, layers 1, 2, and 3 need 1, 1, and 2 bits,
respectively. R1 in Figure 3(a) has the code 10 in layer 3.
Therefore, the match condition of R1 is 10**. For an input

address p, we can first locate the interval to which address p
belongs and obtain the code for that interval to perform a
lookup against the match conditions of all ranges. As shown in
Figure 3(a), if p is 15, then the corresponding interval is E3. By
using the code 0011 assigned to E3, we can find that the
matches are R3 and R4.

The PPCE style-II reduces the number of bits required for
each layer by inspecting the code dependencies among layers.
Two primitive ranges at the same layer can be assigned a
common identifier if both ranges are subsets of two disjoint
primitive ranges at other layers. For example, in Figure 3(b),
the addresses that match R1 must also match R3, but the
addresses that match R2 must not match R3. Thus, only one bit
is needed in layer 3.

The PPCE style-III reduces the number of bits by reducing
the number of layers. It groups the primitive ranges at different
layers into one larger layer. The ranges in a layer may be
overlapping. However, a range may be represented as more
than one match condition. Figure 3(c) shows the final result of
the PPCE style-III when R3 and R4 are placed in the same
layer. The elementary intervals covered by R1 and R2 in layer
2 are assigned a common identifier “1” based style-II technique.
In layer 1, the three disjoint intervals, [E2, E2] covered by R4,
[E3, E4] covered by R3 and R4, and [E5, E6] covered by R3,
are assigned with the identifiers 01, 10, and 11, respectively.
Range R4 needs two match conditions, 001 and *10.

The extreme case of PPCE style-III is to put all the ranges
in one single layer, as shown in Figure 3(d), which corresponds
to the RFC-like encoding scheme [3]. This extreme case differs
from the basic elementary interval-based scheme in that the
default elementary intervals are assigned a common identifier 0.

III. PROPOSED RANGE ENCODING SCHEMES

In this section, we improve the existing PPCE encoding
schemes [7] by using BRGC instead of the Buddy code.
Although the proposed schemes are designed for ranges, they
are also applicable to prefixes for reducing the TCAM storage
usage, especially in the 128-bit IPv6 source and destination
address fields.

A. Elementary interval and BRGC-based range encoding
In this scheme, the default elementary intervals are given a

common code and the valid elementary intervals are assigned
with the codes based on BRGC. For example, in Figure 2, the
codes assigned to the six valid elementary intervals, E1, E3, E4,
E5, E6, and E7 are 001, 010, 110, 111, 101, and 100,
respectively, in the BRGC sequence. The default elementary
intervals, E0, E2, and E8, are assigned with the code 000. As a
result, the primitive range R1 is represented as the ternary
string 1*1. Similarly, R2 is represented as 001, R3 as 1**, and
R4 as, *10 and 111, as shown in Figure 4(a).

B. Enhancing PPCE with BRGC
We modify the PPCE style-II and style-III by using BRGC

to assign the identifiers to the valid elementary intervals. We
find the ranges that satisfy the following conditions: (1) the
ranges contain 2n valid elementary intervals and (2) the ranges

Figure 3. PPCE results for the four ranges in Figure 2.

E1 E2 E3 E4 E5 E6
01

1
1

1

1 1
1001 11

(d) RFC

layer 3 [3-2]
layer 2 [1]
layer 1 [0]

layer 3 [2]
layer 2 [1]
layer 1 [0]

layer 2 [2]
layer 1 [1-0]

layer 1 [2-0]

0100 0001 0011 1011 1010 0010

100 001 011 111 110 010

100 001 010 110 111 011

001 010 011 100 101 110

(a) PPC style - I

(b) PPC style - II

(c) PPC style - III

1

10

1
1

R2

R4
R3 R1

TABLE I
PPCE MATCH CONDITIONS FOR RANGES IN FIGURE 2.

correspondence R1 R2 R3 R4
Figure 3 (a) 10** 01** **1* ***1
Figure 3 (b) 11* 10* *1* **1
Figure 3 (c) 11* 10* *1* 001,*10
Figure 3 (d) 10* 001 011,10*,110 001,*10

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1836

are overlapped 2m (0 ≤ m ≤ n) valid elementary intervals by
other ranges. We can assign a sequence of BRGC codes to the
2n valid elementary intervals.

Figure 4(b) shows one way to assign the BRGC identifiers
to the four ranges in Figure 2. Layer 1 needs two bits because
ranges R3 and R4 divide the address space into four address
segments. The address segments covered by only R4, covered
by both R3 and R4, and covered by only R3 are assigned with
code 01, 11, and 10, respectively. Layer 1 needs only one bit
based on the PPCE style-II. As a result, three bits are needed
to represent the match conditions of the ranges as shown in the
third row of Table II. The whole address space is mapped onto
seven intervals with all the 3-bit codes except 101. For this
example, we can reduce the number of match conditions of
some range by an optimization as follows. Since no address
can be translated to the intermediate value of 101, the search
operations will remain correct if the match condition(s) of a
range is added with the code 101. As a result, the match
condition of R2 can be 100 or 10* if R2 is given an additional
code 101. Likewise, the match condition of R4 may be 0*1
and 111 (two prefixes) or **1 (one prefix) if R4 is given an
additional code 101. Note that this optimization is different
from the virtual interval technique described below.

Figure 4(c) shows another way to assign the BRGC
identifiers to the four ranges in Figure 2. It is easy to assign
the BRGC identifiers such that the match condition of range
R1, R2, or R3 can be represented by only one ternary string.
However, since R4 covers three consecutive elementary
intervals, E2, E3, and E4, then none of the encoding schemes
can encode R4 into one ternary string. Because the code 011 is
not used, we can view the interval E2 as two intervals by
assigning both 011 and 010 to E2, where 011 can be called a
virtual code. As a result, range R4 can be represented as one
ternary string *1* and the ternary strings for other ranges are
not changed.

Based on the identifier assignment shown in Figure 4(c),
the four ranges can be viewed as two disjoint range groups,
one consists of range R2 and the other consists of three ranges,
R1, R3, and R4. Since BRGC identifiers are used, we denote
these two range groups as BRGC range groups. Our proposed
scheme can be formulated as follows.

1. The original ranges are classified into many BRGC range
groups. We shall present how ranges can be found to form
a BRGC range group later.

2. BRGC range groups are mapped to different layers in a
hierarchy such that the BRGC range groups in the same
layer must be disjoint and the ranges of the BRGC range
groups in the layer are assigned with BRGC codes.

If the BRGC range group is restricted to contain only one
range, then the proposed scheme is identical to the PPCE style-
I scheme. A BRGC range group is a set of ranges that are
encoded by BRGC wherein the match condition of each range
in the set is represented by only one ternary string. As shown in
Figure 4(c), ranges R1, R3, and R4 are selected to form a
BRGC range group, and R2 forms another BGRC range group
by itself. Because these two BRGC range groups are disjoint,
all the ranges in these two BRGC range groups can be placed

Figure 4.PPCE and GC encoding for ranges in Figure 2.
(c) PPCE style–III + GC + virtual interval

Virtual code for the virtual interval

1 1
1101 10

001 110 111 101 100

layer 2 [2]
layer 1 [1-0]

layer 1 [2-0]

layer 1 [2-0]

001 010 110 111 101 100

100 001 011 111 110 010

E1 E2 E3 E4 E6
R3 R1 R4

R2

010
011

E5

(a) RFC-like encoding + GC

(b) PPCE style–II & III + GC

Style A

Figure 5. Perfect BRGC range groups.

Group A4 (001 is unused)

*00

1**

*10
1

110 111 101 100010011 000

001 110 111 101 100010011
1

0*1 1*1
1

1**

Group B4 (000 is unused)

1100 1101 1111 1110 1010 101110011000
0000001100100110011101010100

*1**

1***

*0001*10 *1000*10

1*1* 0*1*

Group A8 (0001 is unused)

1100 1101 1111 1110 1010 1011100110000001
0011

00100110011101010100

*1**

1***

1*1* 0*1*

00*1 01*1 11*1 10*1

Group B8 (0000 is unused)

1*

01 11 10

*1

Group A2 or B2 consisting of 2 ranges

Style B

TABLE II
MATCH CONDITIONS OF THE RANGES IN FIGURE 2 FOR PPCE+GC.

correspondence R1 R2 R3 R4
Figure 4 (a) 1*1 001 1** *10, 111
Figure 4 (b) 11* 10* or 100 *1* **1
Figure 4 (c) 1*1 001 1** *1*

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1837

in the same layer. Subsequently, we discuss how to find BRGC
range groups.

Now, we formally define the BRGC range group to be a set
of ranges if the following rules are satisfied: (1) no range is
disjoint from the other ranges in the group, (2) each range
covers exactly 2c consecutive elementary intervals, and (3) the
identifiers assigned to these 2c intervals can be merged into one
ternary string, where c is a non-negative integer. A BRGC
range group is called the perfect BRGC range group if it covers
2d – 1 valid elementary intervals which need 2d – 1 distinct
identifiers. If a perfect BRGC range group is the only BRGC
range group in a layer, then we need d bits for the layer and the
unused identifier is assigned to the default elementary intervals.
As a result, all 2d d-bit codes are used and no code is wasted.

We show the perfect BRGC range groups consisting of 2, 4,
and 8 ranges in Figure 5. In these perfect BRGC range groups,
we assume that the start endpoints or finish endpoints of two
ranges are different and the finish endpoint of one range is
different from the finish endpoint minus one of another range
in the group. The perfect BRGC range groups of 16 or more
ranges can be constructed recursively. For example, the two
ranges in group A2 cover three valid elementary intervals and
are assigned the BRGC identifiers, 01, 11, and 10. The
identifier 00 is assigned to the two default elementary intervals.
As a result, the two ranges in group A2 can be represented with
two 2-bit match conditions, 1* and *1. There are many other
possible perfect BRGC range groups when the start endpoints
or finish endpoints of two ranges are the same or the finish
endpoint of one range is the same as the finish endpoint minus
one of another range in the group.

Now, we show the range groups called imperfect BRGC
range groups that are not perfect BRGC groups. The imperfect
BRGC range groups do not utilize all the 2d d-bit codes if d bits
are needed. Therefore, it is better to put imperfect groups in the
same layer as other BRGC range groups in order to prevent
wasting the unused codes. For example, Figure 6 shows two
imperfect BRGC range groups, C and D. Group D needs four
bits to encode the nine elementary intervals it covers. We can
see that six 4-bit codes are wasted aside from the one code used
for the default intervals. Group C is also an imperfect BRGC
range group. If group C and one single range are put into the
same layer as group D, no extra bit is thus needed.

Subsequently, we introduce two code assignment
techniques to facilitate the search for range groups so that each
range can be represented with one ternary string.

C. Many-to-one code assignment
The many-to-one code assignment scheme achieves the

goal of using only one ternary string to encode a range by
assigning more than one code to an elementary interval. We
have shown an example that assigns two codes to an
elementary interval in Figure 4(c). The many-to-one code
assignment scheme is applied when the second rule of the
BRGC range group defined above is not satisfied, that is, not
all the ranges in the group cover exactly 2c consecutive
elementary intervals. It is not possible to merge the codes
assigned to the elementary intervals covered by a range into
one ternary string if the number of the intervals is not 2c. If

there are so many ranges that do not cover exactly 2c

consecutive elementary intervals, determining which
elementary intervals are given the unused codes may be
difficult. Therefore, we cautiously employ this scheme as
follows. For a group of ranges, we try to assign more unused
codes to the existing intervals covered by these k ranges only if
there are less than k ranges that cover 2c – s consecutive
elementary intervals. The values of k and s can be varied. In
this paper, we set k and s to 1, as in the example of Figure 4(c).

D. One-to-many code assignment
It is a common case that one range may overlap with other

ranges. Consider a range set S in which the range R completely
encloses the other ranges in S. Based on the proposed encoding
schemes described above, S cannot form a perfect BRGC range
group because one code, usually 0, is reserved for the default
interval. Thus, range R must not cover the power of 2
consecutive elementary intervals. However, S may form an
imperfect BRGC range group. Therefore, we develop the one-
to-many code assignment scheme which can be used to find an
imperfect BRGC range group for this common case. The one-
to-many code assignment scheme extends the use of a common
code from the default elementary intervals to the valid
elementary intervals by assigning a common code to the valid
elementary intervals covered by the same subset of original
ranges. Consider the example shown in Figure 7. In range
group E, R1 encloses R2 and R3 and then intersects R4. The
three elementary intervals that are covered only by R1 are
given the same code 0000, as shown underlined. There are
three other elementary intervals that are covered by R1. These
three elementary intervals are assigned with codes, 0001, 0011,
and 0010. Based on BRGC, the elementary interval only
covered by R4 is given 0110 so that the match condition of R4
can be represented as a ternary string 0*10. The code
assignment for the range group F can also be done by the one-
to-many code assignment scheme. As a result, only four bits
are needed for the 11 ranges illustrated in Figure 7.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed BRGC-based TCAM encoding schemes and compare
them with the existing algorithms. Under the same
classification tables, we evaluate storage requirements in terms
of SRAM and TCAM.

We use ClassBench [8] to generate the rule tables and
extract their source and destination ports as the range sets to
form a 2-D rule tables. Since the range sets for the source and
destination ports we generated are large, they lose the
characteristics of the real rule tables. In other words, all the
ranges are heavily intersected with each other. They can be
treated as randomly generated range sets. Likewise, because

Figure 6.Imperfect BRGC range groups

Group C of 3 ranges

0111 unused

Group D of 5 ranges

1001
1110

1111
1101

1100 1010
1011 10000100 0110

0010
0011

0001 0101
0000

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1838

the results for ACL, IPC, and Firewall are similar, we only
show the results for Firewall.

The evaluated schemes are the direct range-to-prefix
conversion (Direct), the elementary interval-based scheme
using Buddy code (EIEBC) and the basic elementary interval-
based scheme using BRGC (EIEGC), the bitmap intersection
scheme (Bitmap), PPCE style-II or III which performs the best
(PPCE), and the proposed modified PPCE scheme using
BRGC and virtual intervals (PPCGC). Table III shows the
TCAM storage requirements in terms of number of TCAM
entries and the size of a single TCAM entry.

As expected, Direct consumes the most TCAM storage
space among all the tested methods. Bitmap, PPCE, and
PPCGC need the least number of TCAM entries, but they need
longer TCAM entries. The size of TCAM entries for EIEBC
and EIEGC is only 22 bits. EIEGC and PPCGC need the least
number of TCAM bits. The difference of the required TCAM
space between EIEGC and PPCGC decreases when the size of
the rule table increases.

Now, we calculate the SRAM space required for translating
input addresses to the code values (i.e., the intermediate
results). Since the port numbers are currently 16-bit values, we

implement the address-to-intermediate result translation by
using an array of 64k entries for each of the source and
destination port fields. The entry size of the translation array
needs to be as wide as the TCAM entries corresponding to the
tested scheme. Table IV shows that Bitmap, PPCE, and
PPCGC require much more SRAM than the other schemes.
The use of SRAM for Bitmap, PPCE, or PPCGC grows
linearly as the size of rule table increases. The size of SRAM
needed for EIEBC and EIEGC does not increase much as the
size of the rule table increases.

V. CONLUSIONS

In this paper, we improve the existing range encoding
schemes for TCAMs by using the binary reflected Gray code.
To evaluate our scheme, we use ClassBench to generate
classification tables and present the performance results. Our
results show that the proposed Gray code-based schemes
perform better than the traditional Buddy code-based schemes
in terms of TCAM and SRAM memory usages.

REFERENCES

[1] M.D. Berg, M.V. Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications.
Springer Verlag, 1997.

[2] H. J. Chao, “Next Generation Routers,” Proceeding of the IEEE,
vol. 90, no. 9, pages 1518-1558, 2002.

[3] P. Gupta and N. McKeown, “Packet classification on multiple
fields,”Comput. Commun. Rev., vol. 29, pp. 147–160, Oct.
1999.

[4] P. Gupta, N. McKeown, “Algorithms for packet classification,”
IEEE Network (2001) 24–32.

[5] T. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,”
Comput. Commun. Rev., vol. 28, no. 4, pp. 203–214, Oct. 1998.

[6] H. Liu, “Efficient mapping of range classifier into ternary-
CAM,” in IEEE Symp. High Performance Interconnects
(Hotl’02), 2002.

[7] J. V. Lunteren and T. Engbersen, "Fast and Scalable Packet
Classification," IEEE Journal on Selected Areas in
Communications, Vol. 21, No. 4, May 2003.

[8] D. E. Taylor and J. S. Turner, “ClassBench: A Packet
Classification Benchmark,” in Proc. INFOCOM 05, March
2005.

[9] E. M. Reingold, J. Nievergelt. and N. Deo, Combinatorial
Algorithms, Englewuod Cliffs, NJ: Prentice-Hall, 1977.

[10] Y.K. Chang, “A 2-Level TCAM Architecture for Ranges”, IEEE
Trans. on Comp., Vol. 55, no. 12, pp. 1614 – 1629, Dec. 2006.

[11] N. Mohan and, M. Sachdev, "Low Power Dual Matchline
Ternary Content Addressable Memory," Proc. IEEE ISCAS
2004, Vancouver, pp. 633-636, May 23-26, 2004.

[12] F. Zane, G. Narlikar, and A. Basu, "CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines," in Proc. INFOCOM 03,
March 2003.

[13] Y.K. Chang, "Power-Efficient TCAM Partitioning for IP
Lookups with Incremental Updates", Lecture Notes in Computer
Science, Vol. 3391, pp. 531 – 540, Jan. 2005.

Figure 7.The imperfect BRGC range groups by the enclosure encoding technique.

10011110111111011100 1010 1011 100001000110001000110001 01010000

The unused code 0111 can be used for default interval.

Range group E of 4 ranges Range group F of 6 ranges

0000 0000
00**

10001000

1***
*1000*10 11*1

111*
101*

10*1

R2
R1

R3 R4
R5

R6 R7
R8

R9
R10

TABLE III
TCAM STORAGE REQUIREMENTS OF 100, 500, AND 1000 2-D RULES

IN TERMS OF TOTAL(NUM/LEN), WHERE NUM IS THE NUMBER OF
TCAM ENTRIES AND LEN IS THE NUMBER OF BITS IN EACH TCAM

ENTRY, AND TOTAL = NUM×LEN.

Rule Table FW100 FW500 FW1000

Direct 618,464
(19,327/32)

3,218,656
(100,583/32)

6,315,520
(197,360/32)

EIEBC 53,792
(3,362/16)

673,800
(33,690/20)

1,783,804
(81,082/22)

EIEGC 39,216
(2,451/16)

520,800
(26,040/20)

1,432,200
(65,100/22)

Bitmap 20,000
(100/200)

500,000
(500/1,000)

2,000,000
(1,000/2,000)

PPCE 16,500
(100/165)

404,000
(500/808)

1,533,000
(1,000/1,533)

PPCGC 15,500
(100/155)

370,500
(500/741)

1,422,000
(1,000/1,422)

TABLE IV
SRAM STORAGE REQUIREMENTS FOR 2-D RULE TABLES IN KBIT.

Rule Table FW100 FW500 FW1000
Direct 0 0 0
EIEBC 1,024 1,280 1,408
EIEGC 1,024 1,280 1,408
Bitmap 12,800 64,000 128,000
PPCE 10,560 51,712 98,112

PPCGC 9,920 47,424 91,008

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1839

